Testing the Science on Humans

My hair started thinning when I was 32. I'm now 40, and my shedding has eased up. Dr. Harris informs me I have plenty left for a follicular unit transplant. But after watching Scott's procedure, I'm a little freaked out. Yet, all the specialists I speak with urge anyone dealing with hair loss to act fast, because once the hairs are gone, they're gone for good.

"Absolutely no one concerned about hair loss should wait," Dr. Washenik says. He started taking Propecia when he was in his thirties (he's now 50), and he uses Rogaine religiously. He is a big advocate of drug therapies, and readily champions surgical options such as follicular unit grafting.

Dr. Washenik examines my scalp and announces, "Rogaine is made for you. You're not bald; your hairs are just miniaturized." I'm a chemical-phobe, so I'd rather save my dough and wait for a viable hair-cloning procedure, which many of the experts I talked to claim is less than 5 years away.

Intercytex, a public company based in London, may be closest to a marketable product, says Jerry Cooley, M.D., a transplant surgeon who has been consulting for the firm since 2001. Nobody directly employed by Intercytex would speak to me for this story. "We do not feel that exposure of our research is helpful," wrote Jeff Teumer, Intercytex's director of research, in a curt e-mail. But Dr. Cooley, who works closely with Teumer, tells me that Intercytex scientists have successfully grown large batches of cloned proto-hairs similar to those that other researchers have been struggling to keep alive.

What's more, in animal experiments, the Intercytex team has observed cloned hair follicles growing hair again after the original hairs were plucked. This suggests that their cloned follicles cycle through the entire life span of hair—three phases known as anagen (growth), catagen (transitional), and telogen (resting)—something no other researchers have been able to do.

A key to the team's success has been growing proto-hairs in a special medium, licensed from a Japanese inventor, which contains cultured skin cells known as keratinocytes. "I'm very excited about this technology," Dr. Cooley says. "It's not a matter of if, it's a matter of when."

Bessam Farjo, M.D., a hair-restoration surgeon contracted by Intercytex to run its ongoing clinical trials, says, "All I can tell you is that we've grown a significant number of hairs on animals through this technique." It sounds encouraging, and Dr. Farjo expects to complete clinical trials this year.

Hair cloning will be pricey initially, so early adopters may be men who are not only wealthy, but also desperate because they don't have enough hair left to do a follicular unit transplant. Cloning could also be ideal for younger men who aren't good candidates for follicular grafting. "Younger guys aren't suitable for current surgical techniques because we don't know how much hair they are going to lose," Dr. Farjo says.

Imagine if the receded hairline of a 25-year-old male were replaced with a follicular unit transplant. If the rest of his hair were to fall out—and going bald at an early age generally means it will—he wouldn't have enough hair to complete a second or third follicular unit transplant, so he'd end up with a solitary plume sprouting from his forehead. "It would look like unfinished business, which is why we typically avoid working on young guys," Dr. Farjo says. "But if I know I'll never run out of hair, thanks to the new cell therapy, I can treat anyone."

Nobody is sure how the actual cloning process will be implemented. Most surgeons speculate that they'll use boring tools similar to the existing ones used for harvesting follicular units. The follicular units will be sent to centralized labs, where industrial incubators will mass-produce millions of follicle cells for a relatively low cost.

Another question is how will the cloned cells be transplanted? Instead of transplanting follicular units, your surgeon may inject cloned cells into micro-incisions, or he may implant lab-grown hair follicles. It could be fast, clean, and painless. Or it might entail something closer to Dr. Cotsarelis's method at Follica. At Intercytex, technicians are tinkering with sundry techniques. "We're experimenting with varying the number of cells in each injection, and whether we have to inject the cells into the skin as it is, or if we have to pre-stimulate the skin," Dr. Farjo says.

Whatever the outcome, choices will abound. In the future, hair cloning will coexist alongside follicular unit transplants, drug therapies, and emerging technologies still incubating in the labs. For his part, Dr. Harris is also part of a team designing the world's first follicular extraction robot: It will fully automate the procedure, making it magnitudes faster and less expensive.

While Scott was being prepped for surgery, Dr. Harris took me into his office to show me a photo of the $25 million speed surgeon (the actual machine was locked in a storage closet a few floors above us). At about 6 feet tall with a fixed base and a mechanical arm with multiple joints, it resembles one of those space-age automatons you might see on a vehicle assembly line at a Toyota plant. Dr. Harris has already tested it on a couple of willing volunteers (with no alarming mishaps) and is preparing to apply for FDA approval under the name Restoration Robotics.

"We think the robot might be able to extract a thousand grafts an hour," Dr. Harris says. "That's more than triple what can be done by hand. This will broaden the market so that more people can afford the procedure. There may be a time soon when hair-transplant surgery will be available to everyone."

No comments:

Post a Comment